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MHC 𝛼-helices form the antigen-binding cleft and are of particular interest for immunological reactions. To monitor these helices
in molecular dynamics simulations, we applied a parsimonious fragment-fitting method to trace the axes of the 𝛼-helices. Each
resulting axis was fitted by polynomials in a least-squares sense and the curvature integral was computed. To find the appropriate
polynomial degree, the method was tested on two artificially modelled helices, one performing a bending movement and another a
hinge movement. We found that second-order polynomials retrieve predefined parameters of helical motion with minimal relative
error. From MD simulations we selected those parts of 𝛼-helices that were stable and also close to the TCR/MHC interface. We
monitored the curvature integral, generated a ruled surface between the two MHC 𝛼-helices, and computed interhelical area and
surface torsion, as they changed over time. We found that MHC 𝛼-helices undergo rapid but small changes in conformation. The
curvature integral of helices proved to be a sensitive measure, which was closely related to changes in shape over time as confirmed
by RMSD analysis. We speculate that small changes in the conformation of individual MHC 𝛼-helices are part of the intrinsic
dynamics induced by engagement with the TCR.

1. Introduction

T cells play amajor role in both innate immunity and adaptive
immunity. Their surface-bound T cell receptors (TCRs)
recognise antigens and thereby detect hazardous organisms
or changes inside cells. TCRs recognize short peptide frag-
ments (p) that are bound to major histocompatibility com-
plexes (MHC). Different interactions of TCR/peptide-MHC
(TCR/pMHC) are believed to be the basis for distinctive
stimuli that lead to and trigger different fates of the T cell,
for example, T cell development, thymic selection, lineage
commitment, differentiation into effector cells, or memory T
cell responses to foreign antigens [1].

MHCs are surface-bound proteins and their role is to
present peptide fragments to TCRs, be they self- or alloanti-
gens. To achieve this, MHCs have a cleft that is able to bind
peptide fragments.This cleft comprises two 𝛼-helices and five

subjacent lateral𝛽-strands forming a sheet or floor of the cleft.
TCRs engage peptide MHCs in a diagonal arrangement
that seems to be a common mode of interaction across
TCRs [2, 3]. The two MHC 𝛼-helices interact with the TCR
complementarity determining regions (CDR) 1 and 2, while
the MHC-bound peptide interacts with CDR3, although
CDR1 has also been shown to interact with the terminal
parts of the peptide. Most of the sequence variability of
TCRs is found within CDRs; these regions are also referred
to as hypervariable regions. The two MHC 𝛼-helices are
of particular interest as they represent stable secondary
structural domains interacting with TCRs.

Adhesion and signaling proteins together with a set
of TCR/pMHC complexes form a junction between T cell
and an antigen-presenting cell that is referred to as an
immunological synapse. It serves as a platform for assembly
and segregation of signaling complexes, which cooperatively
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decide the outcome of T cell activation and effector function.
New findings show that this supramolecular complex forms
too late to be relevant for initial TCR signaling that happens
within seconds after pMHC engagement, with the TCR
initiating a tyrosine phosphorylation cascade [4]. Such an
early signal may be sufficient to trigger effector function
like killer T cell cytolysis of target cells. Stimulation of
proliferation, however, requires engagement and signaling for
many minutes or even hours [5–8]. It is important to note
that 𝛼𝛽-TCR itself has no signaling motif but associates with
homo- and heterodimeric cluster of differentiation 3 (CD3)
subunits, 𝜁𝜁, 𝜀𝛿, and 𝜀 in a noncovalent way. These subunits
contain immunoreceptor tyrosine-based activation motifs
(ITAMs) that can be phosphorylated and initiate downstream
signaling of TCR activation.

Protein structures as found in protein databases (e.g.,
Protein Data Bank (PDB)) show a static image. In con-
trast to that, in molecular dynamics (MD) simulations, the
protein explores many conformations and allows one to
capture its dynamics. Computational immunoinformatics is
a well-established, rapidly evolving field [9]. In previous
papers [10, 11] we presented a first evaluation of three
TCR/pMHC systems that differ only slightly in the MHC
amino acid sequence. Macdonald et al. [12] determined
binding characteristics and immunogenicity of MHC alleles
HLA-B∗44:02, HLA-B∗44:03, and HLA-B∗44:05 in complex
with the ABCD3 self-peptide (EEYLQAFTY) and LC13 TCR.
HLA-B∗44:02 and B∗44:05 trigger an immune response
when bound to the LC13 TCR, while HLA-B∗44:02 does
not despite extensive amino acid sequence homology. This
renders these HLA alleles an interesting set to study TCR
allorecognition. Macdonald et al. [12] determined the X-
ray structure of the ternary complex HLA-B∗44:05, ABCD3
nonapeptide, and LC13 TCR that is accessible on the protein
database (PDB, http://www.pdb.org/, PDB-ID: 3KPS). Due to
extensive sequence identity we were able to use in silico site-
directed mutagenesis to obtain 3D structures of the missing
TCR/pMHC complexes. MD simulations in the nanosecond
range could possibly show short-lived changes in dynamic
behaviour, conformation, propagation of forces, or early
activation signals [13, 14].

The aim of the present paper is to put forward ade-
quate tools for identifying and monitoring of conformational
changeswith possible functional relevance inMHC𝛼-helices,
and in particular to monitor geometric characteristics of the
MHC peptide-binding groove. Here, we present (i) a robust
and parsimonious method to find an approximation of a pro-
tein’s 𝛼-helical axis, (ii) an evaluation of polynomial degree
adequacy in describing bending or hinge movements of
particular 𝛼-helical axes, and (iii) application of polynomial
fitting of 𝛼-helical axis to monitor 𝛼-helical conformations
along MD simulations in different TCR/pMHC immunolog-
ical complexes.

Our previous studies established the use of polynomials
to model 𝛼-helices in MHC molecules and monitor their
dynamic behaviour [15]. To mathematically describe the
structural dynamics of MHC 𝛼-helices at the TCR/pMHC
binding interface we first identified those helical regions
which were stable and therein those which are close to

Table 1: Molecular dynamics simulations.

Number Molecular system
(TCR/peptide/MHC) Simulation length

1 LC13 TCR/ABCD3/HLA-B∗44:02
(B4402) 250 ns

2 LC13 TCR/ABCD3/HLA-B∗44:03
(B4403) 250 ns

3 LC13 TCR/ABCD3/HLA-B∗44:05
(B4405) 250 ns

the protein-protein interface.Then we extracted the 𝛼-helical
axis and finally determined a polynomial that approximates
this axis in a least-squares sense.

Various methods to extract a helix axis have been devel-
oped [16], including rotational fitting, using C

𝛼
atoms as

control points of B-splines [17] or fitting to a helix. We used
a fragment-fitting method, based on previous work [16], to
locate the axis of 𝛼-helices as follows: an ideal, linear 𝛼-
helix fragment comprising four C

𝛼
atoms is superimposed

on successive pieces of MHC 𝛼-helices in a least-squares
sense. Along the axis of the fitted helical fragment, we
adopt points as estimates of the MHC 𝛼-helix axis and fit
a polynomial through these points. From the polynomial,
geometric parameters can be derived to monitor conforma-
tional changes. Polynomials fitted to the 𝛼-helical axis can, in
principle, be of any degree. However, polynomials of higher
order tend to oscillate, adding noise to geometrical quantities
computed thereof. We therefore evaluated polynomials of
different degrees for their ability to reproduce bending and
hinge motions of an 𝛼-helix with minimum relative error.
Between two adjacent 𝛼-helices, as found in MHC proteins,
the polynomials serve to span a ruled surface. This interheli-
cal surface lends itself to derive several quantitative character-
istics of shape: (a) total area [18, 19], (b) a profile of interhelical
distances along the binding cleft, and (c) heuristic “centre
line of the cleft” which may be constructed, along which the
surface torsion, that is, a twist or screw of the interhelical sur-
face, can be computed. The latter characterizes the positions
and bending of helices relative to each other and defines the
geometrical shape of the peptide-binding cleft that is ligated
to the TCR. Dynamics in the shape of the protein-protein
interface might modulate the TCR/pMHC binding affinity.

2. Methods

2.1. Homology Modelling of TCR/pMHC Complexes. Three
TCR/pMHC systems listed in Table 1 were simulated. The X-
ray structure of TCR/pMHCB4405 (number 3 in Table 1) was
taken from the PDB (PDB-ID: 3KPS). Structures B4402 and
B4403 were engineered by means of in silico site-directed
mutagenesis [20] using B4405 as a structural template. We
introduced

(i) mutation Y116D to the MHC molecule to get LC13/
ABCD3/HLA-B∗44:02 complex (B4402),

(ii) mutations Y116D and D156L to the MHCmolecule to
get LC13/ABCD3/HLA-B∗44:03 complex (B4403).
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Figure 1: TCR/pMHC. The three HLA molecules studied in this paper are closely related and differ only at amino acid position 116 and/or
156.The X-ray structure of HLA-B∗44:05 in complex with LC13 TCR and ABCD3 peptide (b) is available from http://www.pdb.org (PDB-ID:
3KPS) and was used as a template to model similar systems containing HLA-B∗44:03 and HLA-B∗44:02. HLA-B∗44:05 Y116D

󳨀󳨀󳨀󳨀→ HLA-B∗44:02
D156L
󳨀󳨀󳨀󳨀→ HLA-B∗44:03. (a) Cartoon representation of TCR/pMHC system.The TCR comprises two chains (lime and pink). Each chain is made
up of a constant domain and a variable domain.The constant domain faces themembrane.TheCDR loops 1–3 are highly polymorphic regions
that interact with the MHC. Beta-sheets are the main secondary structural element of the TCR. MHC (grey) class I comprises alpha-helices
and beta-sheets. Alpha-helices G-ALPHA1 and G-ALPHA2 together with the underlying beta-sheets comprise the peptide-binding pocket
and present digested peptide fragments on the cell surface. (b) Cartoon representation of MHC class I. HLAmolecule (grey), peptide (black),
tyrosine at position 116 (red), and aspartic acid at position 156 (green). (c, d, and e) Surface representation of MHC binding grooves of B4402
(c), B4403 (d), and B4405 (e). Nonpolar residues (white), basic residues (blue), acidic residues (red), and polar residues (green). The ABCD3
peptide is embraced in the peptide-binding groove displayed in cartoon representation. Helix G-ALPHA2 is dominated by alternating acidic
and basic residues. The Y116D mutation introduces a negatively charged residue (compare panel (c) with (b): a red spot appears at the right-
hand side of the peptide). The D156L mutation substitutes a charged residue with an apolar residue. Structures are taken from the first frame
of MD simulations.

See Figure 1(b) for a 3D representation of amino acid posi-
tions Y116 andD156. 3D structures were edited andmutations
introduced with the Swiss PDB Viewer. The program auto-
matically browses a rotamer library and selects an amino acid
rotamerminimizing a scoring function in order to fit the new
amino acid in its surrounding and avoid steric clashes with
other atoms. All MHC molecules simulated have an amino
acid sequence identity of more than 99% and stay in very
similar 3D fold. MHC molecules appeared stable during all
our MD simulations as seen in RMSD plots in Figure 15.

The full amino acid sequence of HLA-B alleles is
accessible from the HLA library (https://www.ebi.ac.uk/ipd/
imgt/hla/) and a description of its topology is accessible from

UniProt (http://www.uniprot.org/uniprot/Q95365). Not sur-
prisingly, a sequence comparison showed that a transmem-
brane helix (24 amino acids) and cytoplasmic tail (30 amino
acids) are missing from the MHC X-ray structure as plasma
membrane structures and flexible protein parts are hard to
determine using X-ray crystallography.The LC13 TCR is also
missing its transmembrane helix.

2.2. Molecular Dynamics Simulations. GROMACS 4.0.7
was used for molecular dynamics simulation. First, water
molecules were added to the protein structure, immersing it
in an artificial water bath of rectangular form and allowing
a minimum distance of 2 nm between the protein and
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the box boundaries. Second, water molecules were replaced
by sodium and chloride ions to yield a salt concentration
of 0.15mol/L and neutralize the protein net charge. Third,
the energy of the solvated system was minimized using a
steepest descent method and then the system was gradually
heated up to 310K during 100 ps position restraint MD
simulation. Finally, MD production runs were done with the
LINCS constraint algorithm acting on all bonds using the
Gromos 53A6 force field [21]. Hydrogen and fast improper
dihedral motions were removed, allowing for an integration
step of 5 fs. Van der Waals and Coulomb interactions were
computed using a cut-off of 1.4 nm. Long-range Coulomb
interactions were computed by Ewald summation. Velocity
rescale temperature coupling was set to 310 K and Berendsen
isotropic pressure coupling was set to 1 bar. The selection of
the force field andMDparameters for pMHCswere evaluated
by Omasits et al. [22] and set accordingly.

2.3. Finding Dynamically Stable 𝛼-Helices at the Protein-
Protein Interface. As outlined in the introduction, the MHC
protein comprises 𝛼-helices and beta-sheets. We are inter-
ested in monitoring C

𝛼
atoms that form stable 𝛼-helices and

are in close contact with the TCR. FromMD simulation data
we calculated the following:

(i) The relative presence of 𝛼-helical structure in the
protein complexes over the simulation time: we used
the DSSP algorithm [23] as implemented in GRO-
MACS to identify secondary structural elements of
the protein complex over simulation time. 𝛼-helices
were considered stable if the ratio

𝑡
𝛼-helix
𝑡sim

≥ 0.5 (1)

with 𝑡
𝛼-helix being the time the main chain (backbone

atoms plus carbonyl oxygen atoms) meets the DSSP
criterion for an 𝛼-helix and 𝑡sim being the total
simulation time.The cut-off value of 0.5 is justified by
the distinctly bimodal distribution (see Figure 11(a)).

(ii) The relative presence of close contacts at the protein-
protein interface: C

𝛼
atoms that are less than 1.4 nm

apart (i.e., the cut-off for electrostatic interactions in
our MD simulations) are defined as being in close
contact. Atom-atomcontacts betweenTCRandMHC
are defined stable if the ratio

𝑡contact
𝑡sim

≥ 0.5 (2)

𝑡contact is the time during which two atoms are in
close contact, and 𝑡sim is the simulation time. Again,
the cut-off value of 0.5 is justified by the distinctly
bimodal distribution (see Figure 11(b)). To get the
residue-wise relative contact time, we averaged the
atom-wise relative contact time (defined in (2)) over
all atoms per residue.

The resulting sets of amino acid residues defined by proce-
dures (i) and (ii) were intersected (workflow, see Figure 2;

results, see Figure 3) before applying further methods
described in Sections 2.4 and 2.5. Dynamically stable helices
(green atomic surface in Figure 3) as defined by procedure
(i) overlap well with the atoms in close contact of the TCR
(red atomic surface in Figure 3) especially with the cut-off
set to 1.4 nm. Note that at the end of the MHC’s peptide-
binding pocket both G-ALPHA1 and G-ALPHA2 exhibit a
kink followed by a short 𝛼-helix. These short 𝛼-helices are
present in the crystal structure, but we found them being
unstable during MD simulations as they fold and unfold. We
do not consider these helices in our analysis, as they are not
in close contact with the TCR.

2.4. Approximating the Axis of an 𝛼-Helix. In order to
mathematically describe and quantify𝛼-helical geometry and
movements, polynomials c(𝑢) of degree 𝑚 were fitted to the
𝛼-helices, where c represents a vector of 3D coordinates and
𝑢 is the curve parameter. Prior to fitting we extracted C

𝛼
atom

coordinates of those amino acids, which fulfil the criterion of
stable 𝛼-helices and close contacts as described in Section 2.3.

According to the structural definition of 𝛼-helices [24]
a model of one ideal 𝛼-helical turn, that is, a fragment
consisting of four C

𝛼
atoms, is constructed, with its axis

coinciding with 𝑥-axis. The coordinates of its 𝑘th C
𝛼
were

assigned as

(

𝑥

𝑦

𝑧

) = (

𝑝 ⋅ (𝑘 − 1)

𝑟 ⋅ cos (𝜑 ⋅ (𝑘 − 1))

𝑟 ⋅ sin (𝜑 ⋅ (𝑘 − 1))

) 𝑘 = 1, . . . , 4 (3)

with pitch 𝑝 = 0.15 nm (advance from one C
𝛼
to the next),

helix radius 𝑟 = 0.23 nm, and 𝜑 = 100 ⋅ 𝜋/180. Along the
axis of this helical fragment we consider three axis points, the
initial (0, 0, 0), the intermediate (1.5⋅𝑝, 0, 0), and the final (3.0⋅
𝑝, 0, 0).

Out of an 𝛼-helix with 𝑁 C
𝛼
atoms we pick moving

groups of four successive C
𝛼
atoms each, to which we fit

the fragment model defined above in a least-squares sense
[25]. Along 𝑥-axis of the fitted fragment model we adopt
points as estimates of the axis of the 𝛼-helix, see Figure 4.
From the very first fitted fragment (C

𝛼
atoms 1, . . . , 4) we

adopt two points as points of the helix: the transformed initial
axis point as a

1
and the transformed intermediate point as

a
2
. From fragments fitted subsequently we adopt only the

respective intermediate points, and from the last fragment
(fitted to C

𝛼
atoms𝑁−3, . . . , 𝑁), we again adopt 2 points, its

“intermediate” as a
𝑁−2

and its final point as a
𝑁−1

. Thus,𝑁−1

points (a
1
, a
2
, . . . , a

𝑁−1
) represent the axis of the 𝛼-helix.

2.5. Fitting the Axis of an 𝛼-Helix. The points (a
1
, a
2
, . . .,

a
𝑁−1

) representing the helical axis are fitted by polynomials
c(𝑢) of degree 𝑚 in a least-squares sense. Separate regression
functions 𝑓

𝑥
, 𝑓
𝑦
, and 𝑓

𝑧
are computed for 𝑥-, 𝑦-, and 𝑧-

coordinates:

c (𝑢) = (

𝑓
𝑥
(𝑢)

𝑓
𝑦
(𝑢)

𝑓
𝑧
(𝑢)

) ; (4)
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Figure 2: Workflow for selecting stable 𝛼-helical contact residues. Starting from MD simulation data we calculated the relative presence of
𝛼-helical structures using the DSSP algorithm (left path) and the relative presence of close contacts over the simulation time (right path).
The resulting sets of amino acids are intersected as to yield one list of amino acids that fulfil both criteria: (i) being located within a certain
distance to the TCR for more than half of the simulation time and (ii) being part of an 𝛼-helix for more than half of the simulation time. The
process results in a list of amino acids that are stable 𝛼-helices and stable close contacts. The authors inspected the list in order to rule out the
fact that only parts of 𝛼-helices were selected. Subjecting only parts of a helix to the fragment-fitting method would result in the calculation
of a meaningless helical axis.

for example, for 𝑥-coordinate,

c
𝑥
(𝑢) = 𝑓

𝑥
(𝑢)

= 𝑝
𝑥,𝑚

𝑢
𝑚

+ 𝑝
𝑥,𝑚−1

𝑢
𝑚−1

+ ⋅ ⋅ ⋅ + 𝑝
𝑥,1

𝑢 + 𝑝
0
.

(5)

The total number of parameters for this model is𝑁parameter =

3 ⋅ (𝑚 + 1). When fitting the curve, parameter 𝑢 is evaluated
at discrete values 𝑢 = 1, 2.5, 3.5, . . . , 𝑁 − 1.5,𝑁 of pitch,

corresponding to the positions of estimated points along the
helical axis. After the regression has been performed, c(𝑢) in
(5) may be evaluated for arbitrary, continuous values 1 ≤ 𝑢 ≤

𝑁, yielding a continuous representation of the helical axis.
Both G-ALPHA1 and G-ALPHA2 helices were modelled

in the same way, yielding models c
1
(𝑢) and c

2
(𝑢) with equal

polynomial degrees 𝑘. It is well known that (with equidistant
data points) interpolating polynomials of too high a degree
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(a) (b)

(c)

Figure 3: Helical residues and close TCR contacts. The atomic surface in green represents stable 𝛼-helical amino acids of the MHC that
were identified by the method described in Section 2.3. The atomic surface in red represents amino acids in close proximity of the TCR with
varying distance cut-offs: (a) 0.8 nm, (b) 1.2 nm, and (c) 1.4 nm. Some parts of the MHC 𝛼-helices G-ALPHA1 and G-ALPHA2 comprise the
protein-protein interface between TCR and pMHC and, as expected, atomic surfaces in green and red overlap. However, not all parts of the
𝛼-helices belong to the close contacts even when the cut-off is set at 1.4 nm. For calculation of the helical axis we skipped the parts that are
not overlapping and not directly interacting with the TCR. Visualization was done with VMD [43]. The contact map was calculated between
C
𝛼
atoms to determine which atoms are in close contacts.

may exhibit severe oscillations near the ends of the interpo-
lation interval [26]. (Interpolating polynomials actually pass
through all data points.) This is also true for approximating
polynomials [27]. (Approximating polynomials need not pass
through data points but rather approximate the shape of their
functional dependence in a least-square sense.) We therefore
kept the polynomial degrees as low as possible.

2.6. Geometric Quantities

2.6.1. Interhelical Distance and Area of Interhelical Surface.
For each polynomial, the curve parameter ranges within
1 ≤ 𝑢 ≤ 𝑁, with possibly different values (𝑁

1
, 𝑁
2
) for

each helix. We consider 𝐿 = min (𝑁
1
, 𝑁
2
) equidistant values

of 𝑢, yielding 𝐿 reference points on each helix model.
Connecting corresponding reference points by straight lines
yields rulings, X(𝑢) = c

2
(𝑢) − c

1
(𝑢), which span a ruled

surface (see Figure 5). (The rule for defining “corresponding”
points has to be adopted in a reasonable way but finally
remains to some degree arbitrary.) From rulings we estimate

distances |X(𝑢)| between polynomials across the cleft. The
resulting polygonmeshwas triangulated and interhelical area
𝐴was calculated, as previously outlined [18, 28]. Each of these
quantities may bemonitored over time, for example,𝐴(𝑡); see
Figure 9. Respective graphs provide well-defined estimates of
changes in width of the intrahelical gap (binding cleft) as a
function of both helical position and time. Likewise, median,
quartiles, and extreme values of interhelical distances for each
𝑢 and of 𝐴 can be obtained.

2.6.2. Torsion of Interhelical Surface. The ruled surface
between both polynomial helix models may bend and wind
in various ways. Describing all aspects would call for a
comprehensive mathematical treatment in terms of differ-
ential geometry, from which we refrain. Instead, we restrict
ourselves to describe something like the “torsion of the
interhelical surface” in a simple, intuitive way; see Figure 5.
(In everyday terminology “torsion” is often called “winding.”
It may apply to (curved) lines as well as to surfaces in 3D
space. We use both terms in parallel with equal meaning.)
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Interval k
1 ≤ k ≤ 4

2 ≤ k ≤ 5

3 ≤ k ≤ 6

i − 1 ≤ k ≤ i + 2

...

i ≤ k ≤ +3

Figure 4: Visualization of the fragment-fitting process. An ideal helical fragment of four C
𝛼
atoms (red) is superimposed on successive pieces

of an 𝛼-helix (grey) in a least-squares sense. Along the axis of the fitted helical fragment we adopt points (blue) as estimates of points on the
axis of the MHC 𝛼-helix. From the very first and last superimposition we adopt one extra point each (green).The sequence of blue and green
points (shown at the bottom of the figure) represents an estimate of the axis of the 𝛼-helix. Subsequently, a polynomial is fitted to these points
in a least-squares sense, yielding a simple model of the 𝛼-helix from which geometric quantities can be derived.

(a) (b)

Figure 5: Surface torsion of the interhelical surface. Front view (left) and top-down view (right) on MHC 𝛼-helices G-ALPHA1 and G-
ALPHA2 whose axes are modelled by second-degree polynomials (blue and red). Lines (in grey, called “rulings”) between the polynomials
span a ruled surface. Taking the mean coordinates of the lines coloured in blue and red results in the centre line (green). When moving over
the surface along the centre line we see that rulings change direction, which can be quantified by a parameter called “surface torsion.” Surface
torsion describes the extent and orientation of twist of a surface along a given line, which is the centre line in our case. The surface torsion
describes important aspects of the relative orientation of the two helix axes towards each other.
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To this end we note that the observer may slide across
a surface along various paths and may, in general, observe
different values of surface torsion along each of the paths.
We notice that torsion in strict mathematical terms is a local
characteristic of the surface, and even more, it depends upon
the path one takes to inspect the surface. For the sake of
simplicity we deliberately adopt the centre line between both
helix models:

m (𝑢) =

1

2

[c
1
(𝑢) + c

2
(𝑢)] , (6)

and let t(𝑢) be the unit tangent vector of m(𝑢). Of note, the
centre line intersects with each of the rulings.While proceed-
ing along the centre line we inspect the directional change of
rulings.This provides us with a particular characterization of
the deformation of the interhelical surface. To quantify this
intuitive description, we introduce a parameter “surface tor-
sion.” It is based on the change in direction between succes-
sive rulings [29] and is determined by the derivative X󸀠(𝑢) =

c󸀠
1
(𝑢) + c󸀠

2
(𝑢). (In strict mathematical terms (of differential

geometry) this quantity is called “parameter of distribution,”
which we think is a very nonintuitive label, prone to bemixed
up with probability distributions. Hence, we prefer the more
intuitive term “surface torsion” to quantify the winding of a
surface while proceeding along a given path (in our case the
centre line), not that surface torsion is generally different in
different directions, even in the very same point of a surface.)
What we call surface torsion is given by [29]

𝜏 (𝑢) =

(X × X󸀠) ⋅ t
|X|
2

. (7)

The integral value

𝑇 = ∫

pathm(𝑢)
𝜏 (𝑢) 𝑑𝑢 (8)

quantifies the relative tilt of the surface between start and
endpoint of the path. Note that 𝜏(𝑢) > 0 indicates right-
handed surface torsion, 𝜏(𝑢) < 0 indicates left-handed
surface torsion, and 𝜏(𝑢) = 0 indicates that the surface at this
point is developable and rulings are parallel. (“Developable”
means that a sheet of paper could be bended to exactly
match the surface; the surface could be “flattened.”) In
summary, the definition of the intrahelical surface depends
on a reasonable selection of rulings, X, and a path, m,
which are both arbitrary to some extent. Despite these
shortcomings in a strict mathematical sense, the concept of
torsion, as introduced here, mirrors some essential features in
describing the interplay between the shape of 𝛼-helices and
their relative orientation in forming the MHC binding cleft.

2.6.3. Curvature of Helices. Derivatives of each polynomial
helix model can be obtained analytically for each value of the
parameter 𝑢, yielding the vectors

c󸀠 (𝑢) =

𝑑c
𝑑𝑢

,

c󸀠󸀠 (𝑢) =

𝑑
2c

𝑑𝑢
2

.

(9)

Curvature 𝜅 is a scalar quantity being per definition positive
in Euclidian 3D space and is obtained via [29]:

𝜅 (𝑢) =

󵄨
󵄨
󵄨
󵄨
󵄨
c󸀠 (𝑢) × c󸀠󸀠 (𝑢)󵄨󵄨󵄨󵄨

󵄨

󵄨
󵄨
󵄨
󵄨
c󸀠 (𝑢)󵄨󵄨󵄨

󵄨

3

. (10)

2.6.4. Construction of a Curved Helix Model and Helix Hinge
Model. So far we have described how an 𝛼-helical axis
is reconstructed by our newly proposed fragment-fitting
method and fitted by a polynomial of a certain degree.
From this polynomial, we calculate the curvature integral
as described in Section 2.6.3. We wanted to find an optimal
degree for these polynomials in order to retrieve confor-
mational deformations with minimal errors. To do so we
modelled two different motions such that MHC 𝛼-helices
could perform: a bending motion and a hinge motion (see
Figure 6).

To model a bending motion we created a curved helix
backbone model with known curvature, as described in
detail in Appendix A. Following polynomial representation
of the backbone, the curvature integral can be obtained
analytically, yielding the reference, ∫ 𝜅

reference
bending 𝑑𝑢 (see (A.2) in

the appendix).
To test our method, the curved helix model was sub-

jected to the fragment-fitting method and the resulting
helix axis was fitted by a polynomial in a least-squares
sense as described in Sections 2.4 and 2.5. The polynomial
was evaluated at 100 equidistant points and curvature and
the curvature integral were calculated numerically, yielding
∫ 𝜅

detector
bending𝑑𝑢 (see (10)). As a quality criterion for regaining the

correct curvature integral we used the relative error

𝜂bending =

∫ 𝜅
detector
bending𝑑𝑢

∫ 𝜅
reference
bending 𝑑𝑢

− 1 (11)

and evaluated it for polynomial degrees 1 to 8. The results are
depicted in Figure 6(b).

To model a hinge motion, we constructed an ideal, linear
𝛼-helix comprising 31 C

𝛼
atoms. Subsequently, the helix was

split into two parts: one C
𝛼
atom was selected and the

remaining part of the helix rotated around the selected C
𝛼

atom to model a hinge motion (see Figure 6(c)).The position
to split the helix (number of C

𝛼
selected) was varied from

C
𝛼
atom 5 to 15. The aim was to examine 𝛼-helix hinges

with two legs unequal in length. From this series of 𝛼-helical
models (different positions of the hinge and varying hinge
angles, 𝛼hinge) we then reconstructed the 𝛼-helical axis using
the fragment-fitting method. A polynomial of 𝑘th order was
fitted to the traced 𝛼-helical axis in a least-squares sense
and the curvature integral calculated numerically, yielding
∫ 𝜅

detector
hinge 𝑑𝑢. The relative error

𝜂hinge =

∫ 𝜅
detector
hinge 𝑑𝑢

𝛼hinge
− 1 (12)

was obtained for polynomials of degrees 1 to 8, with 0 ≤

𝛼hinge ≤ 𝜋/2 being the angle between the two parts of the
helix.
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Figure 6: Capturing helix motions with polynomials of different degrees. Panel (a) is an illustration of a helix bendingmovement.We created
amodel of an ideal linear helix (blue) comprising only C

𝛼
atoms whose axis is gradually bent by amathematically well-defined function. From

this function we can easily derive the curvature (∫ 𝜅
reference
bending 𝑑𝑢) and compare it to the curvature wemeasure (detect) from the polynomial fitted

to the helical axis (∫ 𝜅
detector
bending𝑑𝑢) that was calculated by the fragment-fitting method. From this comparison we derive the relative error; see

(11). Panel (b) shows the relative errors of bendingmotion for polynomial degrees 1 to 8. Panel (c) is an illustration of a helix hinge movement.
We created a model of an ideal linear helix (blue) comprising only C

𝛼
atoms and split it into two parts. One part was 10-atom long and the

other part was 20-atom long. Then one part was rotated around a pivotal point as to simulate a hinge movement. The curvature integral
of the helical axis was compared to the hinge angle by calculating the relative error. Panel (d) shows the relative errors of hinge motion for
polynomials degrees 1 to 8. Polynomials of second degree were found to reproduce the bending and hinge angles withminimal relative errors.

3. Results

3.1. Finding the Optimal Polynomial Degree for Monitoring
Helix Motions. To monitor deformations of 𝛼-helices in
MD simulations we propose an approximation of the 𝛼-
helical axis using a fragment-fitting method (Section 2.4),
fitting the resulting axis by a polynomial in least-squares
sense (Section 2.5), and derive geometric quantities from it
(Section 2.6). To find an optimal degree of polynomials we
applied our method by applying it to modelled 𝛼-helical
bending and hinge motions (Figures 6(a) and 6(b)) and

evaluated the polynomial degree that retrieves a certain 𝛼-
helical motion with minimal relative error. For the hinge
motion we noticed that relative errors increase with poly-
nomials of higher order. For the bending motion, choosing
sixth- or eighth-degree polynomials increases the degree of
freedom while at the same time failing to add adequate
improvement in relative error. Generally, relative errors in
the detection of hinge motions are larger than those for
bendingmotions.The second-order polynomials reproduced
the measured quantities of bending and hinge motions with
low relative error and hence were adopted for monitoring
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Table 2: Median RMSD values of case studies.

Orange Red Red versus orange
Median RMSD Median RMSD Median RMSD

B4402
G-ALPHA2 0.0870 nm 0.0682 nm 0.1350 nm

B4403
G-ALPHA1 0.0789 nm 0.0671 nm 0.1170 nm

B4405
G-ALPHA1 0.0592 nm 0.0556 nm 0.0794 nm

We compared helix conformations between different phases of the
simulation, that is, before and after an inflection point or continous
decrease/increase in the curvature integral (see Figure 7, upper row).Median
values of the RMSD distribution are shown in this table.

MHC 𝛼-helices in all subsequent analyses. We admit that
second-order polynomials may fail to model 𝛼-helical axes
in full detail, but it seems appropriate for capturing trends
in helical motions and shape during an MD simulation with
minimal relative error.

We applied the geometric analysis to model MHC 𝛼-
helices of TCR/pMHC complexes B4402, B4403, and B4405.
By inspecting the curvature integral for MHC 𝛼-helices, G-
ALPHA1 and G-ALPHA2, three interesting cases could be
identified showing changes along the 250 ns MD simulation
(Figure 7, panels in upper row). Phases during which the
curvature integral changes either abruptly ((b) and (c))
or gradually (a) are highlighted in orange and red. Helix
conformations (“bundles”) corresponding to these phases are
shown in panels in the middle row. To check if changes in the
curvature integral actually indicate a conformational change
we calculated RMSD matrices of conformations within and
between orange and red helix bundles (panels in lower row).
In all three cases, RMSD between phases is distinctly larger
(shifted to the right) as compared to RMSD within phases. A
shift towards higher RMSD values indicates a conformational
change and is seen in all three cases (see Table 2 for median
RMSD values). These case studies demonstrate that changes
in conformation of 𝛼-helices during MD simulations can be
monitored using second-degree polynomials fitted to helical
axes.

3.2. Geometric Quantities Characterizing the Shape of MHC
𝛼-Helices. TheMHC peptide-binding groove comprises two
𝛼-helices that interact with the TCR. Using second-order
polynomials, we computed (i) the integral of the curvature
of individual MHC 𝛼-helices, (ii) the area of interhelical
surface, and (iii) the surface torsion along the imaginary
centre line derived from both polynomials that model MHC
𝛼-helices for single time steps in MD simulations. Items
(ii) and (iii) are geometric properties of the ruled surface.
They are used to quantify the geometric relation between the
two helices, for example, their relative orientation, and thus
capture important aspects of the geometry of the peptide-
binding groove, as illustrated in Figure 5.

Curvature is a local feature of a curve. Considering
the curvature integral we obtain a measure of the overall
bending of the whole curve [30]. Curvatures of polynomials

modelling single helices were integrated and monitored over
time as seen in Figure 8. G-ALPHA1 of B4403 and B4405
each undergoes abrupt fluctuations in helical conformation,
reflected in the curvature integral, but is stable in the phases
in-between. The curvature integral for G-ALPHA1 of B4402
shows a gradually increasing trend. We notice that the
curvature integral for G-ALPHA2 is generally higher than
that for G-ALPHA1, reflecting the kink near its N-terminal
end. The two helical parts of G-ALPHA2 form a hinge. G-
ALPHA2 of B4403 and B4405 shows only minor fluctuations
and no abrupt changes in the curvature integral indicating
that the hinge angle stays stable. For B4402, the hinge angle
decreases in the first half of the MD simulation and remains
stable thereafter.

The area of interhelical surface depends on the relative
location of both helices. It changes, as the helices drift apart or
elongate. It also changes when both helices bend in opposite
directions as these amount to a distension of the surface.
Whenever helices bend in similar ways in the same direction,
interhelical area will be relatively unaffected. Depending on
the complexity in shape of the helical axis, second-order
polynomials might not adapt to the axis’ path accurately.
Figure 9 shows an increasing trend of interhelical area for
complexes B4403 and B4405, while a declining trend of
interhelical area is seen for B4402.These changes occur as the
helices of the peptide-binding groovemove closer together or
further apart, respectively.This is also reflected in the distance
of 𝛼-helical centres of masses (data not shown). However,
inspecting Figure 5 clearly demonstrates that the actual shape
of an interhelical surface cannot be characterized by a single
quantity such as the area of interhelical surface.

Amore elaborate descriptor of the shape of a surface is the
surface torsion.This parameter describes the change in angle
between subsequent tangent planes along a given path, in our
case the centre line. High values of surface torsion, regardless
of being positive or negative, describe a rapid change in the
angle. A pair of helices, each being somehow deformed and
both being in varying positions to each other, gives rise to
an interhelical surface with a plethora of possible shapes. For
describing these shapes geometrically, surface torsion is an
important concept, lending itself to quantify the twist in the
surface along a prescribed path.

For B4402, surface torsion along the centre line (see
Figure 5(a)) is left-handed most of the time, reaching a
minimum (ca. −2, data not shown) at half of its length.
Positive values of surface torsion (ca. 0.2, data not shown)
are seen only in rare cases and near both surface termini.The
ruled surface of the peptide-binding cleft at the N-terminus
of G-ALPHA1 appears to bemore stable for B4405 and B4403
than for B4402. Similar trends are seen in the surface torsion
integral, see Figure 10. It is stable for B4405, but trends are
observed for the other two complexes: B4402 shows a drop
in the surface torsion integral during the first 60 ns followed
by a gradual rise. B4403 is rather stable during the first 60–
70 ns and then shows a gradual decrease in surface torsion.

We also looked at the shape complementarity (SC)
(Lawrence and Colman introduced a method to measure
how well the surfaces of two proteins at their interface
match [31]. The parameter output by this method is called
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Figure 7: Curvature integral and helix conformations.Three case studies showing the time course of the curvature integral for G-ALPHA1 (b
and c) and G-ALPHA2 (a). Upper row shows curvature integral along the 250 ns MD simulation. Phases of increasing or decreasing trends
are highlighted in orange and red. Middle row shows 3D conformations of MHC 𝛼-helices (C

𝛼
atoms) and polynomials derived by fragment-

fitting. Colours correspond to the highlighted phases in the upper row. We see that the red bundle of conformations differs from the orange
bundle, especially near the ends. Lower row shows that RMSD matrices between helix conformations were calculated and frequencies of
RMSD values plotted. Red and orange lines represent frequency distribution of RMSD values between configurations within red and orange
phases, respectively. Black lines represent RMSD distributions between configurations in the red and configurations in the orange phases.The
difference between lower RMSD within phases and higher RMSD between phases confirms a conformational change between these phases.

shape complementarity (SC).) of the protein-protein interface
surface and backbone C

𝛼
RMSD. We found SC to be stable

for all three TCR/pMHC systems (see Figure 14). As SC is
unaffected by deformations of the binding cleft (as reflected
by surface torsion, see above) we conclude that TCRs follow
the conformational changes of the MHC surface. RMSDs of
B4402 and B4403 reach a low plateau after a few nanoseconds
and remain stable thereafter. RMSD of B4405 shows an
increasing trend over 250 ns simulation time, rising from
approximately 0.3 nm to 0.6 nm; see Figure 15.

4. Discussion

The mechanism of TCR activation is still controversially
debated and several models have been proposed [32–38].
A recent work of Dustin and Depoil [34] summarizes new
insights into the function of the T cell synapse. The authors
grouped T cell synapse into three interactive layers including
interactions of receptors, a signaling layer, and a cytoskeleton
layer, all contributing to TCR activation, regulation, and fine-
tuning of signaling and responses. Conformational changes
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Figure 8: Curvature integral of MHC 𝛼-helices. Moving average of the curvature integral of MHC helices G-ALPHA1 (a) and G-ALPHA2 (b)
along 250 ns MD simulations of TCR/pMHC systems B4402, B4403, and B4405. Curvature of G-ALPHA2 is higher compared to G-ALPHA1
due to its kink. G-ALPHA1 shows greater fluctuations but is comparable between all three TCR/pMHC complexes. G-ALPHA2 of B4402
shows a decreasing trend, consistently reflected in the area of the ruled surface spanned between both MHC 𝛼-helices (see Figure 9).
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Figure 9: Interhelical distance and area of interhelical surface of MHC 𝛼-helices. (a) Mean distances between the two MHC 𝛼-helices as
measured at 11 different points along the helices. 𝑥-axis describes the running parameter of the helices with each helical axis divided into 100
equidistant points. The orientation of the running parameters of both helices is from N-terminus to C-terminus of G-ALPHA1. Distances
are measured between corresponding points on each helical axis of G-ALPHA1 and G-ALPHA2. The standard deviation of the mean is
shown in the error bars. This distance plot describes the shape and size of the peptide-binding pocket. B4403 and B4405 show a very similar
pocket shape. (b) The two MHC 𝛼-helices span a ruled surface. Moving average of interhelical area along the MD simulation is shown. The
magnitudes of interhelical area of B4403 (nonimmunogenic) and B4405 (immunogenic) are similar and slightly increasing, while B4402
shows a declining trend. The curvature integral (Figure 8) for individual helices shows a concomitant bending and relaxing, explaining the
shrinkage of interhelical area.
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Figure 10: Curvature integral and surface torsion integral of the centre line. (a) The centre line is an imaginary line combining polynomials
fitted to axis ofG-ALPHA1 andG-ALPHA2 (see Figure 5, green line).The curvature integral of the centre line is stable along theMDsimulation
for all three TCR/pMHC complexes. (b) The surface torsion integral along the centre line between two polynomials that approximate MHC
G-ALPHA1 and G-ALPHA2 is stable for B4405. The other two complexes differ: B4402 shows a drop in the surface torsion integral during
the first 60 ns and rises afterwards. B4403 shows a generally decreasing trend.
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Figure 11: Stability of MHC 𝛼-helices and protein-protein contacts. (a) Histogram of amino acids that form 𝛼-helices in the MHC and 𝛽-2-
microglobulin protein complex. 𝛼-helical stability of 0 means that a given C

𝛼
atom is never part of an 𝛼-helix during the MD simulation. On

the contrary, an 𝛼-helical stability of 1 means that this C
𝛼
atom is part of an 𝛼-helix in every time step of theMD simulation and thus is part of

a very stable 𝛼-helix. The histogram shows a distinctly bimodal distribution. (b) Histogram of C
𝛼
atoms forming stable close contacts (atoms

being less than 1.4 nm apart) at the protein-protein interface. The distribution is also distinctly bimodal. Contact stability of 0 means that a
C
𝛼
atom never forms a close contact during the MD simulation. A contact stability of 1 means that this C

𝛼
atom forms very stable contacts

throughout the MD simulation. (c) The number of stable residues on 𝑦-axis is calculated by intersecting both sets of stable helix C
𝛼
atoms

and stable close contacts C
𝛼
atoms. In Section 2.3, we claim that, due to the distinctly bimodal distributions, neither stable 𝛼-helices nor the

number of close contacts is insensitive to the choice of the cut-off. The resulting number of stable residues will roughly stay constant for a
wide range of cut-off values (from 0.2 to 0.8), therefore justifying our choice of 0.5 as the stability cut-off.
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Figure 12: Curvature integral as a function of helical bending. In order to model a bending motion, an ideal linear helix comprising 31
C
𝛼
atoms is distorted by bending its imaginary, linear axis along a cosine function. The curvature of the imaginary axis is known and its

integral serves as the reference for the amount of bending. We compare this reference curvature integral with that derived via our fragment-
fitting method by calculating the relative error. An ideal method would show a very close to linear correlation between the reference and
the measured value. Polynomials of third and fifth degree show the highest relative error, especially for large magnitudes of bending. Sixth-
order polynomials or polynomials of higher order look quite promising regarding relative error. Polynomials of higher order were ruled out
because of overfitting and the fact that spurious terminal oscillations might occur. Second-order polynomials show a well behaved, close to
linear dependence and were therefore adopted to model 𝛼-helices of MHCs.

of the TCR complex have been demonstrated to be relevant
for signaling of the TCR [39]. Association of CD3 proteins to
the TCR/pMHC complex is necessary to transmit the activa-
tion signal to intracellular signalingmolecules [40]. Evidence
suggests that TCR conformational changes are required for
full activation, but there are certain signaling pathways that
can also be activated in the absence of conformational
changes [41]. The three TCR/pMHC complexes analysed in
this work differ only by one or two amino acids in the MHC
molecule. HLA-B∗44:05 (B4405) and HLA-B∗44:02 (B4402)
MHC types trigger LC13 TCR activation in the presence of
the ABCD3 self-peptide. Surprisingly HLA-B∗44:03 (B4403)
does not trigger TCR activation.

To characterise the dynamics of theMHCantigen binding
cleft, we applied (similar to themethods reported by Christo-
pher et al. [16]) a fragment-fitting method to model stable
𝛼-helical regions that are in close proximity (≤1.4 nm) to the
TCR and monitored their geometric parameters. However, it
is known that geometric quantities derived from polynomial
approximations may vary substantially depending on the
polynomial degree chosen [10]. To select an appropriate
polynomial degree, we tested the ability of polynomials with
different degrees to retrieve predefined parameters of helical
motions and deformation. In a simplified model, we tested
the ability of the fragment-fitting method to reproduce the
curvature integral of helical bending and hinge motions.
We found that second-order polynomials are best suited to
model these 𝛼-helical motions with low relative error. The
curvature integral derived from polynomials of individual
𝛼-helices can be related to conformational changes of 𝛼-
helices. Between the two MHC 𝛼-helices a ruled surface can
be spanned, of which we computed the area as an estimate for
the size of the peptide-binding cleft. We also calculated the
surface torsion along an imaginary centre line characterizing

the orientation of both 𝛼-helices relative to each other. We
applied this method toMD simulations of three TCR/pMHC
complexes. However, we were not able to find correlations
between immunogenicity and certain patterns in the 𝛼-
helical movements.

4.1. Limitations. A limitation of the current analysis is that
the ruled surface between the MHC 𝛼-helices that we use to
model the MHC surface presented to the TCR does not con-
sider the shape and dynamics of the peptide that lies between
the two helices. We cannot assume that phase space has been
sampled comprehensibly for these large molecules. Stepwise
fluctuations inmeasured variables are visible (see Figure 7(b),
upper row, and Figure 15). Also, even with highly optimized
simulation performance of 15 ns/day on 1024 computing cores
of the IBM BlueGene, statistics to discriminate between dif-
ferent simulated systems is not feasible. Enhanced sampling
techniques and adequate collective variables might be useful
to identify adequate collective variables for such systems.
Interpretation of single simulations should therefore be done
with caution. Signaling may involve a series of other proteins
of the immunological synapse and interactions that are not
considered in these simplified TCR/pMHC models. Interac-
tions between TCR and pMHC take place between two cells
that are in close contact to each other. It has been shown
that plasma membrane lipids affect the activity of signaling
networks [42] and some models of TCR/pMHC interaction
propose involvement of the plasma membrane [33].

4.2. Conclusion. In this work, changes of MHC shape and
their dynamicswere quantified.We applied the quantification
method to three large TCR/pMHC complexes, due to their
size being accessible by MD simulation studies only since
recently. We saw that MHC 𝛼-helices undergo rapid changes
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Figure 13: Curvature integral as a function of hinge movement.The relative error in retrieving the correct hinge angle is plotted against helix
hinge angle and polynomial degree. To model the hinge motion, a kink of varying angle was introduced to an ideal linear helix comprising
only C

𝛼
atoms (31 atoms). Images (a), (b), and (c) show the same data for different positions of the kink in the helix. We refer to the kink angle

as the signal we want to measure. We compared the signal to the curvature integral of the polynomial fitted to the helical axis by calculating
the relative error. An ideal method would show a linear correlation between signal and themeasured value.We see that polynomials of higher
order show a higher relative error and overestimate the magnitude of the kink.We also see that the position of the kink modulates the relative
error. Second-order polynomials have a nearly linear dependency and were therefore adopted to model 𝛼-helices of MHCs.

in conformation by either bending motion or hinge motion.
Surface torsion used for characterizing the MHC surface
presented to the TCR is stable in B4405, which is the most
immunogenic complex. We speculate that rapid changes in
helical conformation are part of the intrinsic dynamics of
MHCs when engaging with TCRs.

Though we were not able to find a clear correlation
between immunogenicity and certain patterns in the 𝛼-
helical movements, we could demonstrate that single amino
acid polymorphisms in the MHC seem to have a subtle
influence on the helixes’ shape dynamics and that it would be
interesting to apply the same method in the case of peptide
polymorphism.

In summary, the presentwork demonstrates the feasibility
and reliability of deriving shape parameters from simulation
data. Next, the influence of the detected small conformational

changes on the microscopic dynamics will be investigated
to clarify their relation to the biological functions of the
complexes of interest. Conclusions regarding functional
differences between TCR/pMHC systems characterized by
a single-residue polymorphism certainly require advanced
sampling techniques in order to sample the conformational
phase space appropriately for molecules of this size. Future
studies might investigate if the small conformational changes
in MHC 𝛼-helices transmit forces to the TCR.

Appendices

A. Construction of a Curved Helix Model

The backbone is modelled along a cosine curve. We compute
equidistant points along the curve and create C

𝛼
atoms



16 Journal of Immunology Research

1

B4402
B4403
B4405

0.4

0.5

0.6

0.7

0.8

0.9

50 100 150 200 2500
Time (ns)

S C

Figure 14: Shape complementarity of TCR/pMHC interface. Lawrence and Colman [31] introduced shape complementarity statistics
comparing the surface normal alignment on dots from molecular protein-protein surfaces generated according to Connolly [44]. SC is a
measure of how good two protein surfaces fit together. It assumes values between 0 and 1, with 1 indicating a perfect fit. SC is stable and
similar for all three TCR/pMHC complexes along 250 ns MD simulations.

with constant normal distances to the backbone. Angles
between successive C

𝛼
atoms were set to 𝛽 = 100

∘. Formally,
coordinates along the axis of the helix are given by

x =

{
{
{
{

{
{
{
{

{

𝑥 = 𝑡

𝑦 = 𝑎 cos 𝑡

𝑧 = 0,

(A.1)

where 𝑎 represents the maximum elongation (amplitude) of
the curved helix, compared to 𝑎 = 0, corresponding to a
straight model. Increasing 𝑎 in a stepwise fashion generates
models of increasing curvature.

For the curvature we obtain

𝜅 (𝑡) =

𝑎 sin 𝑡

(1 + 𝑎
2sin2𝑡)3/2

,

𝜅 (0) = 𝑎.

(A.2)

In order to keep the length of backbones constant, the limits
for parameter 𝑡 have to be adjusted appropriately; 𝑡 ∈ [−𝑏, 𝑏].
In fact 𝑏 = 𝑏(𝑎) is chosen to make the arc length equal to 1:

∫

𝑏

−𝑏

√
1 + 𝑎
2sin2𝑡 𝑑𝑡 = 1. (A.3)

By varying 𝑎 within 0 ≤ 𝑎 ≤ 𝜋/2 different models were
created. Curvature decreases with decreasing 𝑎; in particular
𝑎 = 0 corresponds to a straight line without curvature.
In order to find the appropriate values for 𝑏 = 𝑏(𝑎)

with 𝑎 > 0, an elliptical integral (see (A.3)) has to be
solved. To find 𝑁 equidistant points along the backbone

x
𝑛

= (𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) = (𝑥(𝑡

𝑛
), 𝑦(𝑡
𝑛
), 𝑧(𝑡
𝑛
)), for 𝑛 = 1, . . . , 𝑁, we

proceed, similar to the normalization of the arc length, via
numerically solving the elliptical integral:

∫

𝑏

−𝑏

√
1 + 𝑎
2sin2𝑡 𝑑𝑡 =

𝑛 − 1

𝑁 − 1

. (A.4)

In the next step, C
𝛼
atoms are positioned in distance 𝑟 to the

backbone and successively rotated by 𝛽 = 100
∘. The tangent

vector of unit length at position x
𝑛
is given by

r
𝑛
=

1

√1 + 𝑎
2sin2𝑡

𝑛

[

[

[

1

−𝑎 sin 𝑡
𝑛

0

]

]

]

. (A.5)

Next, the radius 𝑟 of 𝛼-helical turns around the axis is set
in proper relation 0.23 nm/0.15 nm to the total length of the
helix:

𝑟 =

0.23

0.15

1

𝑁 − 1

(A.6)

and the vector s
𝑛
to be rotated is given by

s
𝑛
=

𝑟

√1 + 𝑎
2sin2𝑡

𝑛

[

[

[

−𝑎 sin 𝑡
𝑛

−1

0

]

]

]

. (A.7)

The point x
𝑛
+ s
𝑛
is rotated around the axis r

𝑛
by angles 𝛽

𝑛
=

𝛽
0
+ (𝑛 − 1)𝛽 to create coordinates of successive C

𝛼
atoms

(𝑛 = 1, . . . , 𝑁). Finally, all coordinates are scaled via x →

x⋅𝑁⋅0.15 nm to arrive at proper dimensions.Thus,we obtain a
chain of C

𝛼
atoms rotated in a clockwise manner to represent
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Figure 15: Root mean square deviations. Root mean square deviations of TCR/pMHC systems B4402, B4403, and B4405. Superposition of
successive frames was done with respect to protein C

𝛼
backbone of the first frame of the simulation (nonprogressive fitting) and RMSD was

calculated between protein C
𝛼
backbones. Row TCR/pMHC shows that the whole protein system, TCR/pMHC, was fitted to itself and RMSD

calculated for the whole protein. Row MHC shows that TCR was fitted to itself and RMSD calculated for TCR. Row TCR shows that MHC
was fitted to itself and RMSD calculated for MHC. Results for B4405 indicate that 250 ns of simulation time does not suffice to sample the
whole phase space, which is a common finding for such large proteins. RMSD time courses for B4402 and B4403 do not explicitly indicate
nonstationary behaviour. They indeed show slower and smaller growth of RMSD over time than does B4405, also indicating their stability
as a molecule (despite two point mutations introduced). As noted before, the present work intends to delineate techniques for modelling
geometries of MHC components and does not aim at statistical comparisons between the motions of different HLA alleles. Ergodicity is
hence not a vital issue; see the discussion in Schreiner et al. [45].

a curved right-handed helix along a predefined, cosinusodial
backbone.

The curved helix model has a few limitations. (i) Due to
the curvature of the cosine arc and the construction of C

𝛼

atoms with normal distances, the typical distance between
successive C

𝛼
atoms is not maintained. (ii) We refrained

from constructing the full backbone also including nitrogen,
oxygen, and hydrogen atoms and restricted the model to C

𝛼

carbon atoms only. This seems justifiable, however, since the
fragment-fitting algorithm also takes into account C

𝛼
atoms

only as does the DSSP algorithm and the calculation of close
contacts. Therefore, modelling the full backbone would not
add more information to the model. (iii) The cosine arc is

planar and hence cannot incorporate any torsion within the
curved helix model.

B. Additional Data

See Figures 11–16.
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Figure 16: Dynamics of secondary structure. The TCR/pMHC systems B4402, B4403, and B4405 comprise 829 amino acids. The following
list shows which residues belong to which protein:MHC, residues 1–276;𝛽-2-microglobulin, residues 277–375; ABCD3 peptide, residues 376–
384; TCR 𝛼, residues 384–584; TCR 𝛽, residues 585–825. The graph on the right-hand side displays the structural behaviour of amino acid
residues along the simulation time. Different secondary structural elements are assigned different colours as shown in the legend. Secondary
structures are stable along the 250 ns MD simulation for all three TCR/pMHC systems. The graph on the left-hand side displays the relative
simulation time that an amino acid residue is part of an 𝛼-helix. Extended and stable 𝛼-helices in these TCR/pMHC systems are only present
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